
Audit Report
February, 2022

For

QuillAudits

Amplify

https://audits.quillhash.com/smart-contract-audit

Contents

Scope of Audit

Check Vulnerabilities

Techniques and Methods

Issue Categories

Number of security issues per severity.

Introduction

A. Contract – Asset

Issues Found – Code Review / Manual Testing

High Severity Issues

Medium Severity Issues

Low Severity Issues

 A.1 Missing value verification:

 A.2 Floating Pragma:

B. Contract – AssetStorage

Issues Found – Code Review / Manual Testing

High Severity Issues

Medium Severity Issues

Low Severity Issues

01

01

02

03

03

04

05

05

05

05

05

05

06

07

07

07

07

07

Contents

C. Contract – RiskModel

Issues Found – Code Review / Manual Testing

High Severity Issues

Medium Severity Issues

Low Severity Issues

D. Contract – Controller

Issues Found – Code Review / Manual Testing

High Severity Issues

Medium Severity Issues

 D.1 For Loop Over Dynamic Array:

Low Severity Issues

 D.2 Missing address verification:

 D.3 Floating Pragma:

E. Contract – ControllerStorage

Issues Found – Code Review / Manual Testing

High Severity Issues

Medium Severity Issues

Low Severity Issues

07

07

07

07

07

08

08

08

08

08

09

09

10

11

11

11

11

11

Contents

F. Contract – Rewards

Issues Found – Code Review / Manual Testing

High Severity Issues

Medium Severity Issues

 F.1 For Loop Over Dynamic Array:

Low Severity Issues

 F.2 Floating Pragma:

G. Contract – StableCoin

Issues Found – Code Review / Manual Testing

High Severity Issues

Medium Severity Issues

Low Severity Issues

 G.1 Missing address verification:

 G.2 Floating Pragma:

H. Contract – ERC20

Issues Found – Code Review / Manual Testing

High Severity Issues

Medium Severity Issues

12

12

12

12

12

14

14

15

15

15

15

15

15

16

17

17

17

17

Contents

Low Severity Issues

 H.1 Approve Race:

 H.2 Floating Pragma:

I. Contract – ERC20Burnable

Issues Found – Code Review / Manual Testing

High Severity Issues

Medium Severity Issues

Low Severity Issues

J. Contract – ERC20Mintable

Issues Found – Code Review / Manual Testing

High Severity Issues

Medium Severity Issues

Low Severity Issues

K. Contract – ERC721

Issues Found – Code Review / Manual Testing

High Severity Issues

Medium Severity Issues

Low Severity Issues

17

17

18

19

19

19

19

19

19

19

19

19

19

19

19

19

19

19

Contents

L. Contract – ERC721URIStorage

Issues Found – Code Review / Manual Testing

High Severity Issues

Medium Severity Issues

Low Severity Issues

M. Contract –IERC721

Issues Found – Code Review / Manual Testing

High Severity Issues

Medium Severity Issues

Low Severity Issues

N. Contract – AMPTChild

Issues Found – Code Review / Manual Testing

High Severity Issues

Medium Severity Issues

Low Severity Issues

O. Contract – VotingEscrow

Issues Found – Code Review / Manual Testing

High Severity Issues

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

21

21

21

Contents

Medium Severity Issues

Low Severity Issues

 O.1 Missing Address Verification:

 O.2 Usage Of block.timestamp:

 O.3 Usage of Inline Assembly:

P. Contract – InterestRateModel

Issues Found – Code Review / Manual Testing

High Severity Issues

Medium Severity Issues

Low Severity Issues

Q. Contract – WhitePaperInterestRateModel

Issues Found – Code Review / Manual Testing

High Severity Issues

Medium Severity Issues

Low Severity Issues

 Q.1 Missing Value Verification:

 Q.2 Floating Pragma:

R. Contract – Borrower

21

21

21

22

23

24

24

24

24

24

25

25

25

25

25

25

26

27

Contents

Issues Found – Code Review / Manual Testing

High Severity Issues

Medium Severity Issues

 R.1 For Loop Over Dynamic Array:

Low Severity Issues

 R.2 Missing Address Verification:

 R.3 Missing Value Verification:

 R.4 Floating Pragma:

S. Contract – Lender

Issues Found – Code Review / Manual Testing

High Severity Issues

Medium Severity Issues

Low Severity Issues

T. Contract – Pool

Issues Found – Code Review / Manual Testing

High Severity Issues

Medium Severity Issues

 T.1 For Loop Over Dynamic Array

27

27

27

27

29

29

31

33

34

34

34

34

34

35

35

35

35

35

Contents

Low Severity Issues

 T.2 Missing Address Verification:

 T.3 Missing Value Verification:

 T.4 Usage Of block.timestamp:

 T.5 Floating Pragma:

U. Contract – PoolToken

Issues Found – Code Review / Manual Testing

High Severity Issues

Medium Severity Issues

Low Severity Issues

 U.1 Approve Race:

 U.2 Floating Pragma:

V. Contract – LossProvisionPool

Issues Found – Code Review / Manual Testing

High Severity Issues

Medium Severity Issues

Low Severity Issues

Functional Testing

36

36

38

39

40

41

41

41

41

41

41

42

43

43

43

43

43

44

Contents

 Results

Closing Summary

51

52

01audits.quillhash.com

The scope of this audit was to analyze and document the Amplify smart
contracts codebase for quality, security, and correctness.

Scope of the Audit

We have scanned the smart contract for commonly known and more
specific vulnerabilities. Here are some of the commonly known
vulnerabilities that we considered:

Checked Vulnerabilities

Re-entrancy

Timestamp Dependence

Gas Limit and Loops

DoS with Block Gas Limit

Transaction-Ordering Dependence

Use of tx.origin

Exception disorder

Gasless send

Balance equality

Byte array

Transfer forwards all gas

ERC20 API violation

Malicious libraries

Compiler version not fixed

Redundant fallback function

Send instead of transfer

Style guide violation

Unchecked external call

Unchecked math

Unsafe type inference

Implicit visibility level

Amplify - Audit ReportQuillAudits

02audits.quillhash.com

Techniques and Methods
Throughout the audit of smart contract, care was taken to ensure:

The overall quality of code.
Use of best practices.
Code documentation and comments match logic and expected behaviour.
Token distribution and calculations are as per the intended behaviour
mentioned in the whitepaper.
Implementation of ERC-20 token standards.
Efficient use of gas.
Code is safe from re-entrancy and other vulnerabilities.

The following techniques, methods and tools were used to review all the
smart contracts.

Structural Analysis
In this step, we have analysed the design patterns and structure of smart
contracts. A thorough check was done to ensure the smart contract is
structured in a way that will not result in future problems.

Static Analysis
Static analysis of smart contracts was done to identify contract
vulnerabilities. In this step, a series of automated tools are used to test the
security of smart contracts.

Code Review / Manual Analysis
Manual analysis or review of code was done to identify new vulnerabilities
or verify the vulnerabilities found during the static analysis. Contracts were
completely manually analysed, their logic was checked and compared
with the one described in the whitepaper. Besides, the results of the
automated analysis were manually verified.

Gas Consumption
In this step, we have checked the behaviour of smart contracts in
production. Checks were done to know how much gas gets consumed
and the possibilities of optimization of code to reduce gas consumption.

Tools and Platforms used for Audit
Remix IDE, Truffle, Truffle Team, Solhint, Mythril, Slither, Solidity statistic
analysis, Theo.

Amplify - Audit ReportQuillAudits

03audits.quillhash.com

Issue Categories
Every issue in this report has been assigned to a severity level. There are
four levels of severity, and each of them has been explained below.

High

Risk-level Description

Medium

Low

Informational

A high severity issue or vulnerability means that your smart

contract can be exploited. Issues on this level are critical to the

smart contract’s performance or functionality, and we

recommend these issues be fixed before moving to a live

environment.

The issues marked as medium severity usually arise because of

errors and deficiencies in the smart contract code. Issues on

this level could potentially bring problems, and they should still

be fixed.

Low-level severity issues can cause minor impact and
or are just warnings that can remain unfixed for now.
It would be better to fix these issues at some point in
the future.

These are severity issues that indicate an
improvement request, a general question, a cosmetic
or documentation error, or a request for information.
There is low-to-no impact.

Number of issues per severity

Open

Type High

Closed

Acknowledged

Low

0 0

0

0

1

3

00

0

0

13

13

Medium Informational

Amplify - Audit ReportQuillAudits

04audits.quillhash.com

Introduction
During the period of December 26, 2021, to January 25, 2022 - QuillAudits
Team performed a security audit for Amplify smart contracts.

The code for the audit was taken from the following official repo of Amplify:
https://github.com/amplify-labs/contracts/tree/main/protocol/contracts

V Date Commit hash

1

2

January

January

d8af5f11f3b6ab59d09a56ebc229012900dc1c

c935b39804f5cdaaaf7e6926b86c07488f148671

Amplify - Audit ReportQuillAudits

https://github.com/amplify-labs/contracts/tree/main/protocol/contracts

05audits.quillhash.com

Issues Found – Code Review / Manual Testing

A.Contract - Asset

High severity issues

No issues were found.

No issues were found.

Medium severity issues

Low severity issues

A.1 Missing value verification

Line 23:
 function tokenizeAsset(
 string memory tokenHash,
 string memory tokenRating,
 uint256 value,
 uint256 maturity,
 string memory tokenURI
) external returns (uint256) {
 _tokenIds.increment();

 uint256 newAssetId = _tokenIds.current();
 _mint(msg.sender, newAssetId);

 _tokens[newAssetId] = Token(
 value,
 maturity,
 riskModel.getInterestRate(tokenRating),
 riskModel.getAdvanceRate(tokenRating),
 tokenRating,
 tokenHash,
 false
);

Line 75:
 function addRiskItem(string memory rating, uint256 interestRate,
 uint256 advanceRate) external onlyOwner {
 riskModel.set(rating, interestRate, advanceRate);
 }

 function updateRiskItem(string memory rating, uint256 interestRate,
 uint256 advanceRate) external onlyOwner {
 riskModel.set(rating, interestRate, advanceRate);
 }

Amplify - Audit ReportQuillAudits

06audits.quillhash.com

Description
Certain functions lack a safety check in the value, the values that are
coming from the arguments should be verified, otherwise, the
contract's functionality might get hurt.

Remediation
It’s recommended to undertake further validation prior to user-supplied
data. The concerns can be resolved by utilizing a whitelist technique or a
modifier.

Description
The contract makes use of the floating-point pragma 0.8.0. Contracts
should be deployed using the same compiler version and flags that were
used during the testing process. Locking the pragma helps ensure that
contracts are not unintentionally deployed using another pragma, such
as an obsolete version that may introduce issues in the contract system.

Remediation
Consider locking the pragma version. It is advised that floating pragma
not be used in production. Both truffle-config.js and hardhat.config.js
support locking the pragma version.

Fixed
The Amplify team has fixed the issue by adding require statements to
verify the values provided from the arguments.

Fixed
The Amplify team has solved the issue by fixing the pragma version to
0.8.4.

Status: Closed

Status: Closed

A.2 Floating Pragma

Line 3:
pragma solidity ^0.8.0;

Amplify - Audit ReportQuillAudits

07audits.quillhash.com

B.Contract - AssetStorage

High severity issues

No issues were found.

No issues were found.

No issues were found.

Medium severity issues

Low severity issues

C.Contract - RiskModel

High severity issues

No issues were found.

No issues were found.

No issues were found.

Medium severity issues

Low severity issues

Amplify - Audit ReportQuillAudits

08audits.quillhash.com

D.Contract - Controller

High severity issues

No issues were found.

Medium severity issues

Description
When smart contracts are deployed or their associated
functions are invoked, the execution of these operations always
consumes a certain quantity of gas, according to the amount of
computation required to accomplish them. Modifying an unknown-
size array that grows in size over time can result in a Denial-of-Service
attack. Simply by having an excessively huge array, users can exceed the
gas limit, therefore preventing the transaction from ever succeeding.

Remediation
Avoid actions that involve looping across the entire data structure. If you
really must loop over an array of unknown size, arrange for it to consume
many blocks and thus multiple transactions.

Fixed
The Amplify Team has fixed the issue by limiting the amount of created
pools.

Status: Closed

D.1 For Loop Over Dynamic Array

Line 280:
for(uint8 i=0; i < borrowerPools[borrower].length; i++) {
 address pool = borrowerPools[borrower][i];
 pools[pool].isActive = false;
 }

Amplify - Audit ReportQuillAudits

09audits.quillhash.com

Low severity issues

D.2 Missing address verification

Line 247:
 function whitelistLender(address _lender, address _pool) external returns (uint256) {
 Application storage application = poolApplicationsByLender[_pool][_lender];
 require(borrower == msg.sender, toString(Error.INVALID_OWNER));

Line 273:
function blacklistBorrower(address borrower) external onlyOwner returns (uint256) {
 Borrower storage _borrower = borrowers[borrower];

 require(_borrower.created, toString(Error.BORROWER_NOT_CREATED));
 require(_borrower.whitelisted, toString(Error.BORROWER_NOT_WHITELISTED));

 _borrower.whitelisted = false;
 for(uint8 i=0; i < borrowerPools[borrower].length; i++) {
 address pool = borrowerPools[borrower][i];
 pools[pool].isActive = false;
 }
 emit BorrowerBlacklisted(borrower);
 return uint256(Error.NO_ERROR);
 }

Line 289:
 function blacklistLender(address _lender) external returns (uint256) {
 require(borrowerWhitelists[msg.sender][_lender],
toString(Error.LENDER_NOT_WHITELISTED));

 borrowerWhitelists[msg.sender][_lender] = false;

Line 312:
 function addStableCoin(address stableCoin) onlyOwner external {
 require(_stableCoins.insert(stableCoin));
 }

 function removeStableCoin(address stableCoin) onlyOwner external {
 require(_stableCoins.remove(stableCoin));
 }

 function containsStableCoin(address stableCoin) public view returns (bool)
{ return _stableCoins.contains(stableCoin);
 }

Amplify - Audit ReportQuillAudits

10audits.quillhash.com

Description
Certain functions lack a safety check in the address, the address-type
argument should include a zero-address test, otherwise, the contract's
functionality may become inaccessible or tokens may be burned in
perpetuity.

Remediation
It’s recommended to undertake further validation prior to user-supplied
data. The concerns can be resolved by utilizing a whitelist technique or a
modifier.

Description
The contract makes use of the floating-point pragma 0.8.0. Contracts
should be deployed using the same compiler version and flags that were
used during the testing process. Locking the pragma helps ensure that
contracts are not unintentionally deployed using another pragma, such
as an obsolete version that may introduce issues in the contract system.

Remediation
Consider locking the pragma version. It is advised that floating pragma
not be used in production. Both truffle-config.js and hardhat.config.js
support locking the pragma version.

Fixed
The Amplify Team has fixed the issue by verifying the addresses
provided in the arguments using a modifier.

Fixed
The Amplify team has solved the issue by fixing the pragma version to
0.8.4.

Status: Closed

Status: Closed

D.3 Floating Pragma

Line 3:
pragma solidity ^0.8.0;

Amplify - Audit ReportQuillAudits

11audits.quillhash.com

E.Contract - ControllerStorage

High severity issues

No issues were found.

No issues were found.

No issues were found.

Medium severity issues

Low severity issues

Amplify - Audit ReportQuillAudits

12audits.quillhash.com

F.Contract - Rewards

High severity issues

No issues were found.

Medium severity issues

F.1 For Loop Over Dynamic Array

Line 26:
function getTotalBorrowReward(address account) external view returns (uint256) {
 uint256 totalAmount;
 for(uint256 i=0; i< rewardPools.length; i++) {
 totalAmount += this.getBorrowReward(account, rewardPools[i]);
 }
 return totalAmount;
 }

Line 39:
 function getTotalSupplyReward(address account) external view returns (uint256) {
 uint256 totalAmount;
 for(uint256 i=0; i< rewardPools.length; i++) {
 totalAmount += this.getSupplyReward(account, rewardPools[i]);
 }
 return totalAmount;
 }
Line 63:
 function claimAMPT(address[] memory holders, address[] memory poolsList, bool
borrowers, bool suppliers) public {
 for (uint8 i = 0; i < poolsList.length; i++) {
 address pool = poolsList[i];
 if (borrowers == true) {
 updateBorrowIndexInternal(pool);
 for (uint8 j = 0; j < holders.length; j++) {
 distributeBorrowerTokens(pool, holders[j]);
 borrowerState[holders[j]][pool].accrued = grantRewardInternal(holders[j],
borrowerState[holders[j]][pool].accrued);
 }
 }
 if (suppliers == true) {
 updateSupplyIndexInternal(pool);
 for (uint8 j = 0; j < holders.length; j++) {
 distributeSupplierTokens(pool, holders[j]);
 supplierState[holders[j]][pool].accrued = grantRewardInternal(holders[j],
supplierState[holders[j]][pool].accrued);
 }
 }
 }
 }

Amplify - Audit ReportQuillAudits

13audits.quillhash.com

Description
When smart contracts are deployed or their associated
functions are invoked, the execution of these operations always
consumes a certain quantity of gas, according to the amount of
computation required to accomplish them. Modifying an unknown-
size array that grows in size over time can result in a Denial-of-Service
attack. Simply by having an excessively huge array, users can exceed the
gas limit, therefore preventing the transaction from ever succeeding.

Remediation
Avoid actions that involve looping across the entire data structure. If you
really must loop over an array of unknown size, arrange for it to consume
many blocks and thus multiple transactions.

Acknowledged
The Amplify team has acknowledged the risk since these methods are
getters and won’t affect the logic of the contract.

Status: Acknowledged

Amplify - Audit ReportQuillAudits

14audits.quillhash.com

Low severity issues

F.2 Floating Pragma

Line 3:
pragma solidity ^0.8.0;

Description
The contract makes use of the floating-point pragma 0.8.0. Contracts
should be deployed using the same compiler version and flags that were
used during the testing process. Locking the pragma helps ensure that
contracts are not unintentionally deployed using another pragma, such
as an obsolete version that may introduce issues in the contract system.

Remediation
Consider locking the pragma version. It is advised that floating pragma
not be used in production. Both truffle-config.js and hardhat.config.js
support locking the pragma version.

Fixed
The Amplify team has solved the issue by fixing the pragma version to
0.8.4.

Status: Closed

Amplify - Audit ReportQuillAudits

15audits.quillhash.com

G.Contract - StableCoin

High severity issues

No issues were found.

No issues were found.

Medium severity issues

G.1 Missing address verification

Line 12:
 function insert(Data storage self, address stableCoin) public returns (bool) {
 if (self.flags[stableCoin]) {
 return false;
 }

 self.flags[stableCoin] = true;
 self.addresses.push(stableCoin);
 self.addressIndex[stableCoin] = self.id;
 self.id++;
 return true;
 }

Description
Certain functions lack a safety check in the address, the address-type
argument should include a zero-address test, otherwise, the contract's
functionality may become inaccessible or tokens may be burned in
perpetuity.

Remediation
It’s recommended to undertake further validation prior to user-supplied
data. The concerns can be resolved by utilizing a whitelist technique or a
modifier.

Acknowledged
The Amplify team has acknowledged the risk since the StableCoin
contract it is used as a library by the Controller contract which has
address verifications added.

Status: Acknowledged

Amplify - Audit ReportQuillAudits

Low severity issues

16audits.quillhash.com

G.2 Floating Pragma

Line 3:
pragma solidity ^0.8.0;

Description
The contract makes use of the floating-point pragma 0.8.0. Contracts
should be deployed using the same compiler version and flags that were
used during the testing process. Locking the pragma helps ensure that
contracts are not unintentionally deployed using another pragma, such
as an obsolete version that may introduce issues in the contract system.

Remediation
Consider locking the pragma version. It is advised that floating pragma
not be used in production. Both truffle-config.js and hardhat.config.js
support locking the pragma version.

Fixed
The Amplify team has solved the issue by fixing the pragma version to
0.8.4.

Status: Closed

Amplify - Audit ReportQuillAudits

17audits.quillhash.com

H.Contract - ERC20

High severity issues

No issues were found.

No issues were found.

Medium severity issues

Low severity issues

H.1 Approve Race

Line 62:
 function approve(address spender, uint amount) public virtual override returns (bool) {
 _approve(msg.sender, spender, amount);
 return true;
 }

Description
The standard ERC20 implementation contains a widely-known racing
condition in its approve function, wherein a spender is able to witness
the token owner broadcast a transaction altering their approval and
quickly sign and broadcast a transaction using transferFrom to move
the current approved amount from the owner’s balance to the spender.
If the spender’s transaction is validated before the owner’s, the spender
will be able to get both approval amounts of both transactions.

Remediation
Use increaseAllowance and decreaseAllowance function to modify the
allowance value instead of overriding it using the approve function.

Fixed
The Amplify team has added the increaseAllowance and
decreaseAllowance to solve the issue.

Status: Closed

Amplify - Audit ReportQuillAudits

18audits.quillhash.com

H.2 Floating Pragma

Line 3:
pragma solidity ^0.8.0;

Description
The contract makes use of the floating-point pragma 0.8.0. Contracts
should be deployed using the same compiler version and flags that were
used during the testing process. Locking the pragma helps ensure that
contracts are not unintentionally deployed using another pragma, such
as an obsolete version that may introduce issues in the contract system.

Remediation
Consider locking the pragma version. It is advised that floating pragma
not be used in production. Both truffle-config.js and hardhat.config.js
support locking the pragma version.

Fixed
The Amplify team has solved the issue by fixing the pragma version to
0.8.4.

Status: Closed

Amplify - Audit ReportQuillAudits

19audits.quillhash.com

I.Contract - ERC20Burnable

J.Contract - ERC20Mintable

K.Contract - ERC721

High severity issues

High severity issues

High severity issues

No issues were found.

No issues were found.

No issues were found.

No issues were found.

No issues were found.

No issues were found.

No issues were found.

No issues were found.

No issues were found.

Medium severity issues

Medium severity issues

Medium severity issues

Low severity issues

Low severity issues

Low severity issues

Amplify - Audit ReportQuillAudits

20audits.quillhash.com

L.Contract - ERC721URIStorage

M.Contract - IERC721

N.Contract - AMPTChild

High severity issues

High severity issues

High severity issues

No issues were found.

No issues were found.

No issues were found.

No issues were found.

No issues were found.

No issues were found.

No issues were found.

No issues were found.

No issues were found.

Medium severity issues

Medium severity issues

Medium severity issues

Low severity issues

Low severity issues

Low severity issues

Amplify - Audit ReportQuillAudits

21audits.quillhash.com

O.Contract - VotingEscrow

High severity issues

No issues were found.

No issues were found.

Medium severity issues

Low severity issues

O.1 Missing Address Verification

Line 452:
 function _delegate(address delegator, address delegatee) internal {
 Balance storage _sourceBalance = _operationBalances[delegator];
 Balance memory _oldSourceBalance = _sourceBalance;

 require(_sourceBalance.amount > 0, "No existing lock found");

 Balance storage _destinationBalance = _operationBalances[delegatee];
 Balance memory _oldDestinationBalance = _destinationBalance;
 delegates[delegator] = delegatee;
 emit DelegateChanged(delegator, delegatee);

 _sourceBalance.amount = 0;
 /// @dev The balance.end should be intact for the future deposits
 _checkpoint(delegator, _oldSourceBalance, _sourceBalance);

 _destinationBalance.amount += _oldSourceBalance.amount;
 if(_oldDestinationBalance.end == 0) {
 _destinationBalance.end = _oldSourceBalance.end;
 }
 _checkpoint(delegatee, _oldDestinationBalance, _destinationBalance);
 }

Amplify - Audit ReportQuillAudits

22audits.quillhash.com

Description
Certain functions lack a safety check in the address, the address-type
argument should include a zero-address test, otherwise, the contract's
functionality may become inaccessible or tokens may be burned in
perpetuity.

Remediation
It’s recommended to undertake further validation prior to user-supplied
data. The concerns can be resolved by utilizing a whitelist technique or a
modifier.

Description
Block.timestamp is used in the contract. The variable block is a set of
variables. The timestamp does not always reflect the current time and
may be inaccurate. The value of a block can be influenced by miners.
Maximal Extractable Value attacks require a timestamp of up to 900
seconds. There is no guarantee that the value is right, all that is
guaranteed is that it is higher than the timestamp of the previous block.

Remediation
You can use an Oracle to get the exact time or verify if a delay of 900
seconds won’t destroy the logic of the staking contract.

Acknowledged
The Amplify team has acknowledged the risk.

Acknowledged
The Amplify team has acknowledged the risk.

Status: Acknowledged

Status: Acknowledged

O.2 Missing Address Verification

Line 607:
 function getBlockTimestamp() public virtual view returns (uint256) {
 return block.timestamp;
 }

Amplify - Audit ReportQuillAudits

23audits.quillhash.com

Description
Inline assembly is a way to access the EVM at a low level. This discards
several important safety features in Solidity.

Remediation
When possible, do not use inline assembly because it is a way to access
the EVM at a low level. An attacker could bypass many important safety
features of Solidity.

Acknowledged
The Amplify team has acknowledged the risk.

Status: Acknowledged

O.3 Usage of Inline Assembly

Line 611:
 function getChainId() internal view returns (uint256) {
 uint256 chainId;
 assembly { chainId := chainid() }
 return chainId;
 }

Amplify - Audit ReportQuillAudits

24audits.quillhash.com

P.Contract - InterestRateModel

High severity issues

No issues were found.

No issues were found.

No issues were found.

Medium severity issues

Low severity issues

Amplify - Audit ReportQuillAudits

25audits.quillhash.com

Q.Contract - InterestRateModel

High severity issues

No issues were found.

No issues were found.

Medium severity issues

Low severity issues

Description
Certain functions lack a safety check in the value, the values that are
coming from the arguments should be verified, otherwise, the
contract's functionality might get hurt.

Remediation
It’s recommended to undertake further validation prior to user-supplied
data. The concerns can be resolved by utilizing a whitelist technique or a
modifier.

Q.1 Missing Value Verification

Line 20:
 constructor(uint256 _blockPerYear) {
 blocksPerYear = _blockPerYear;
 predefinedStages();
 }

Fixed
The Amplify team has fixed the issue by adding a require statement to
verify the value coming from the arguments.

Status: Closed

Amplify - Audit ReportQuillAudits

26audits.quillhash.com

Description
The contract makes use of the floating-point pragma 0.8.0. Contracts
should be deployed using the same compiler version and flags that were
used during the testing process. Locking the pragma helps ensure that
contracts are not unintentionally deployed using another pragma, such
as an obsolete version that may introduce issues in the contract system.

Remediation
Consider locking the pragma version. It is advised that floating pragma
not be used in production. Both truffle-config.js and hardhat.config.js
support locking the pragma version.

Q.2 Floating Pragma

Line 3:
pragma solidity ^0.8.0;

Fixed
The Amplify team has solved the issue by fixing the pragma version to
0.8.4.

Status: Closed

Amplify - Audit ReportQuillAudits

27audits.quillhash.com

R.Contract - Borrower

High severity issues

No issues were found.

Medium severity issues

R.1 For Loop Over Dynamic Array

Line 56:
 function totalPrincipal() public virtual view returns (uint256) {
 uint256 total = 0;
 for (uint8 i = 0; i < creditLines.length; i++) {
 total += creditLines[i].principal;
 }
 return total;
 }

 function totalInterestRate() public virtual view returns (uint256) {
 uint256 total = 0;
 for (uint8 i = 0; i < creditLines.length; i++) {
 total += creditLines[i].interestRate;
 }
 if (total != 0){
 return total / creditLines.length;
 }
 return total;
 }

 /** @dev used by rewards contract */
 function getBorrowerTotalPrincipal(address _borrower) external view returns (uint256)
{
 uint256 balance;

 for(uint8 i=0; i < loansIdsByAddress[_borrower].length; i++) {
 uint256 loanId = loansIdsByAddress[_borrower][i];

 uint256 principal = creditLines[loanId].principal;
 bool penaltyStarted = penaltyInfo[loanId].isOpened;
 balance += penaltyStarted ? 0 : principal;
 }
 return balance;
 }

Amplify - Audit ReportQuillAudits

28audits.quillhash.com

Description
When smart contracts are deployed or their associated
functions are invoked, the execution of these operations always
consumes a certain quantity of gas, according to the amount of
computation required to accomplish them. Modifying an unknown-
size array that grows in size over time can result in a Denial-of-Service
attack. Simply by having an excessively huge array, users can exceed the
gas limit, therefore preventing the transaction from ever succeeding.

Remediation
Avoid actions that involve looping across the entire data structure. If you
really must loop over an array of unknown size, arrange for it to consume
many blocs and thus multiple transactions.

Acknowledged
The Amplify team has acknowledged the risk since it will affect only the
pool.

Status: Acknowledged

Amplify - Audit ReportQuillAudits

29audits.quillhash.com

Low severity issues

R.2 Missing Address Verification

Line 107:
 function createCreditLineInternal(address borrower, uint256 tokenId, uint256
borrowCap, uint256 interestRate, uint256 maturity) internal returns (uint256) {
 require(lockedAssetsIds[tokenId] == false,
toString(Error.LOAN_ASSET_ALREADY_USED));
 uint256 loanId = _loanIds.current();
 _loanIds;

 lockedAssetsIds[tokenId] = true;
 loansIdsByAddress[borrower].push(loanId);

 creditLines.push(CreditLine({
 borrower: borrower,
 borrowCap: borrowCap,
 borrowIndex: mantissaOne,
 principal: 0,
 lockedAsset: tokenId,
 interestRate: interestRate,
 accrualBlockNumber: getBlockNumber(),
 isClosed: false
 }));

 penaltyInfo[loanId] = PenaltyInfo({
 maturity: maturity,
 index: mantissaOne,
 timestamp: maturity + 30 days,
 isOpened: false
 });

 emit CreditLineOpened(loanId, tokenId, borrower, borrowCap, maturity,
interestRate);

 _loanIds.increment();
 return uint256(Error.NO_ERROR);
 }

Line 211:
 function repayInternal(uint256 loanId, address payer, address borrower, uint256
amount) internal onlyIfActive(loanId, borrower) nonReentrant returns (uint256) {
 uint256 allowed = repayAllowed(address(this), payer, borrower, amount);
 require(allowed == 0, toString(Error.CONTROLLER_REPAY_REJECTION));

 CreditLine storage creditLine = creditLines[loanId];
 PenaltyInfo storage _penaltyInfo = penaltyInfo[loanId];
 RepayLocalVars memory vars;

 vars.currentBorrowBalance = borrowBalanceSnapshot(loanId);
 (vars.penaltyIndex, vars.penaltyAmount) = getPenaltyIndexAndFee(loanId);

Amplify - Audit ReportQuillAudits

30audits.quillhash.com

Description
Certain functions lack a safety check in the address, the address-type
argument should include a zero-address test, otherwise, the contract's
functionality may become inaccessible or tokens may be burned in
perpetuity.

Remediation
It’s recommended to undertake further validation prior to user-supplied
data. The concerns can be resolved by utilizing a whitelist technique or a
modifier.

Acknowledged
The Amplify team has acknowledged the risk since it will affect only the
pool.

Status: Acknowledged

Amplify - Audit ReportQuillAudits

31audits.quillhash.com

R.3 Missing Value Verification

Line 107:
 function createCreditLineInternal(address borrower, uint256 tokenId, uint256
borrowCap, uint256 interestRate, uint256 maturity) internal returns (uint256) {
 require(lockedAssetsIds[tokenId] == false,
toString(Error.LOAN_ASSET_ALREADY_USED));
 uint256 loanId = _loanIds.current();
 _loanIds;

 lockedAssetsIds[tokenId] = true;
 loansIdsByAddress[borrower].push(loanId);

 creditLines.push(CreditLine({
 borrower: borrower,
 borrowCap: borrowCap,
 borrowIndex: mantissaOne,
 principal: 0,
 lockedAsset: tokenId,
 interestRate: interestRate,
 accrualBlockNumber: getBlockNumber(),
 isClosed: false
 }));

 penaltyInfo[loanId] = PenaltyInfo({
 maturity: maturity,
 index: mantissaOne,
 timestamp: maturity + 30 days,
 isOpened: false
 });

 emit CreditLineOpened(loanId, tokenId, borrower, borrowCap, maturity,
interestRate);

 _loanIds.increment();
 return uint256(Error.NO_ERROR);
 }

Line 174:
 function borrowInternal(uint256 loanId, address borrower, uint256 amount) internal
nonReentrant onlyIfActive(loanId, borrower) returns (uint256) {
 uint256 allowed = borrowAllowed(address(this), borrower, amount);
 require(allowed == 0, ErrorReporter.uint2str(allowed));

 CreditLine storage creditLine = creditLines[loanId];
 BorrowLocalVars memory vars;

 vars.currentTimestamp = getBlockTimestamp();
 require(vars.currentTimestamp < penaltyInfo[loanId].maturity,
toString(Error.LOAN_IS_OVERDUE));

Amplify - Audit ReportQuillAudits

32audits.quillhash.com

Line 211:
 function repayInternal(uint256 loanId, address payer, address borrower, uint256
amount) internal onlyIfActive(loanId, borrower) nonReentrant returns (uint256) {
 uint256 allowed = repayAllowed(address(this), payer, borrower, amount);
 require(allowed == 0, toString(Error.CONTROLLER_REPAY_REJECTION));

 CreditLine storage creditLine = creditLines[loanId];
 PenaltyInfo storage _penaltyInfo = penaltyInfo[loanId];
 RepayLocalVars memory vars;

 vars.currentBorrowBalance = borrowBalanceSnapshot(loanId);
 (vars.penaltyIndex, vars.penaltyAmount) = getPenaltyIndexAndFee(loanId);

Description
Certain functions lack a safety check in the value, the values that are
coming from the arguments should be verified, otherwise, the
contract's functionality might get hurt.

Remediation
It’s recommended to undertake further validation prior to user-supplied
data. The concerns can be resolved by utilizing a whitelist technique or a
modifier.

Acknowledged
The Amplify team has acknowledged the risk.

Status: Acknowledged

Amplify - Audit ReportQuillAudits

33audits.quillhash.com

Description
The contract makes use of the floating-point pragma 0.8.0.
Contracts should be deployed using the same compiler version and
flags that were used during the testing process. Locking the pragma
helps ensure that contracts are not unintentionally deployed using
another pragma, such as an obsolete version that may introduce issues
in the contract system.

Remediation
Consider locking the pragma version. It is advised that floating pragma
not be used in production. Both truffle-config.js and hardhat.config.js
support locking the pragma version.

R.4 Floating Pragma

Line 3:
pragma solidity ^0.8.0;

Fixed
The Amplify team has solved the issue by fixing the pragma version to
0.8.4.

Status: Closed

Amplify - Audit ReportQuillAudits

34audits.quillhash.com

S.Contract - Lender

High severity issues

No issues were found.

No issues were found.

No issues were found.

Medium severity issues

Low severity issues

Amplify - Audit ReportQuillAudits

35audits.quillhash.com

T.Contract - Pool

High severity issues

No issues were found.

Medium severity issues

T.1 For Loop Over Dynamic Array

Line 157:
 function getTotalBorrowBalance() public virtual override(Lendable, Borrowable) view
returns (uint256) {
 uint256 total;
 for (uint8 i = 0; i < creditLines.length; i++) {
 total += borrowBalanceSnapshot(i);
 }
 return total;
 }

Line 229:
 for(uint8 i=0; i < _gracePeriod.length; i++) {
 uint256 _start = _gracePeriod[i].start * day + _penaltyInfo.maturity;
 uint256 _end = _gracePeriod[i].end * day + _penaltyInfo.maturity;

 if (vars.timestamp >= _start) {
 if(vars.timestamp > _end) {
 vars.daysDelta = _calculateDaysDelta(_end, vars.accrualTimestamp, _start,
day);
 } else {
 vars.daysDelta = _calculateDaysDelta(vars.timestamp,
vars.accrualTimestamp, _start, day);
 }

 vars.penaltyIndex = calculatePenaltyIndexPerPeriod(_gracePeriod[i].fee,
vars.interestBlocksPerYear, vars.daysDelta, vars.penaltyIndex);
 (vars.mathErr, vars.fee) = mulScalarTruncateAddUInt(Exp({mantissa:
vars.penaltyIndex }), vars.principal, vars.fee);
 ErrorReporter.check((uint256(vars.mathErr)));
 }
 }

Amplify - Audit ReportQuillAudits

36audits.quillhash.com

Description
When smart contracts are deployed or their associated
functions are invoked, the execution of these operations always
consumes a certain quantity of gas, according to the amount of
computation required to accomplish them. Modifying an unknown-
size array that grows in size over time can result in a Denial-of-Service
attack. Simply by having an excessively huge array, users can exceed the
gas limit, therefore preventing the transaction from ever succeeding.

Remediation
Avoid actions that involve looping across the entire data structure. If you
really must loop over an array of unknown size, arrange for it to consume
many blocs and thus multiple transactions.

Acknowledged
The Amplify team has acknowledged the risk.

Status: Acknowledged

T.2 Missing Address Verification

Line 37:
 function _initialize(address _admin, address _stableCoin, string memory _name,
uint256 _minDeposit, Access _access) internal nonReentrant {
 isInitialized = true;

 name = _name;
 minDeposit = _minDeposit;
 access = uint8(_access);

 // Set the admin address
 owner = _admin;

 // set the controller
 controller = ControllerInterface(msg.sender);

 // Set the stable coin contract
 stableCoin = IERC20Metadata(_stableCoin);

 lpToken = new PoolToken("PoolToken", stableCoin.symbol());
 }

Low severity issues

Amplify - Audit ReportQuillAudits

37audits.quillhash.com

Description
Certain functions lack a safety check in the address, the address-type
argument should include a zero-address test, otherwise, the contract's
functionality may become inaccessible or tokens may be burned in
perpetuity.

Remediation
It’s recommended to undertake further validation prior to user-supplied
data. The concerns can be resolved by utilizing a whitelist technique or a
modifier.

Acknowledged
The Amplify team has acknowledged the risk.

Status: Acknowledged

Amplify - Audit ReportQuillAudits

38audits.quillhash.com

Description
Certain functions lack a safety check in the value, the values that are
coming from the arguments should be verified, otherwise, the
contract's functionality might get hurt.

Remediation
It’s recommended to undertake further validation prior to user-supplied
data. The concerns can be resolved by utilizing a whitelist technique or a
modifier.

Acknowledged
The Amplify team has acknowledged the risk.

Status: Acknowledged

T.3 Missing Value Verification

Line 37:
 function _initialize(address _admin, address _stableCoin, string memory _name,
uint256 _minDeposit, Access _access) internal nonReentrant {
 isInitialized = true;
 name = _name;
 minDeposit = _minDeposit;
 access = uint8(_access);
 // Set the admin address
 owner = _admin;
 // set the controller
 controller = ControllerInterface(msg.sender);
 // Set the stable coin contract
 stableCoin = IERC20Metadata(_stableCoin);

 lpToken = new PoolToken("PoolToken", stableCoin.symbol());
 }

Amplify - Audit ReportQuillAudits

39audits.quillhash.com

Description
Block.timestamp is used in the contract. The variable block is a set of
variables. The timestamp does not always reflect the current time and
may be inaccurate. The value of a block can be influenced by miners.
Maximal Extractable Value attacks require a timestamp of up to 900
seconds. There is no guarantee that the value is right, all that is
guaranteed is that it is higher than the timestamp of the previous block.

Remediation
You can use an Oracle to get the exact time or verify if a delay of 900
seconds won’t destroy the logic of the staking contract.

Acknowledged
The Amplify team has acknowledged the risk.

Status: Acknowledged

T.4 Usage Of block.timestamp

Line 325:
 function getBlockTimestamp() public virtual view returns (uint256) {
 return block.timestamp;
 }

Amplify - Audit ReportQuillAudits

40audits.quillhash.com

Description
The contract makes use of the floating-point pragma 0.8.0. Contracts
should be deployed using the same compiler version and flags that were
used during the testing process. Locking the pragma helps ensure that
contracts are not unintentionally deployed using another pragma, such
as an obsolete version that may introduce issues in the contract system.

Remediation
Consider locking the pragma version. It is advised that floating pragma
not be used in production. Both truffle-config.js and hardhat.config.js
support locking the pragma version.

T.5 Floating Pragma

Line 3:
pragma solidity ^0.8.0;

Fixed
The Amplify team has solved the issue.

Status: Closed

Amplify - Audit ReportQuillAudits

41audits.quillhash.com

U.Contract - PoolToken

High severity issues

No issues were found.

No issues were found.

Medium severity issues

Low severity issues

Description
The standard ERC20 implementation contains a widely-known racing
condition in it approve function, wherein a spender is able to witness the
token owner broadcast a transaction altering their approval and quickly
sign and broadcast a transaction using transferFrom to move the
current approved amount from the owner’s balance to the spender. If
the spender’s transaction is validated before the owner’s, the spender
will be able to get both approval amounts of both transactions.

Remediation
Use increaseAllowance and decreaseAllowance function to modify the
allowance value instead of overriding it using the approve function.

U.1 Approve Race

Line 7:
 contract PoolToken is ERC20Mintable {

Acknowledged
The Amplify team has acknowledged the risk.

Status: Acknowledged

Amplify - Audit ReportQuillAudits

42audits.quillhash.com

Description
The contract makes use of the floating-point pragma 0.8.0. Contracts
should be deployed using the same compiler version and flags that were
used during the testing process. Locking the pragma helps ensure that
contracts are not unintentionally deployed using another pragma, such
as an obsolete version that may introduce issues in the contract system.

Remediation
Consider locking the pragma version. It is advised that floating pragma
not be used in production. Both truffle-config.js and hardhat.config.js
support locking the pragma version.

U.2 Floating Pragma

Line 3:
pragma solidity ^0.8.0;

Fixed
The Amplify team has fixed the issue.

Status: Closed

Amplify - Audit ReportQuillAudits

43audits.quillhash.com

V.Contract - LossProvisionPool

High severity issues

No issues were found.

No issues were found.

No issues were found.

Medium severity issues

Low severity issues

Amplify - Audit ReportQuillAudits

44audits.quillhash.com

Functional Testing

Amplify - Audit ReportQuillAudits

Function
name

Techn
ical
Resul
t

Logical
Result

Overall
Result Comment

- Pool.sol indicates controller must follow
ControllerInteraface, in Controller.sol interface seems not to
be applied

- functions amptToken(), provisionPool(), interestRateModel(),
assetsFactor() in ControllerInterface.sol seem not to be used
or implemented in implemented Controller.sol ?

Notes Whitepaper(The protocol is implemented as a set of
persistent, non-upgradable smart contracts -will upgrading be
allowed for ?)

Notes most files use(unlocked pragma ^0.8.0; multiple
version rest ^0.8.0 but Governance and Vesting use 0.8.4;

Maybe Natspec needs @title @param @return etc to ensure
full NatSpec compliance for all the files like the commenting
style in Governance/AMPT.sol

Contracts in total may be very large in bytes size making it a
very expensive project to deploy; e.g over 20KB => may need
optimizations or simplifications

Controller
Folder

ControllerStora
ge.sol PASS PASS

Potential to save space in struct Application by moving
created and whitelisted above depositAmount

Stablecoin.sol

all functions PASS PASS Is it not better to use external vs public for library functions?

Rewards.sol

getTotalBorrow
Rewards PASS PASS

has a loop with array that can grow without bound that can be
costly;

45audits.quillhash.com

Amplify - Audit ReportQuillAudits

getBorrowRewa
rd PASS PASS

PASS PASS?
has a loop with array that can grow without bound that can be
costly;

PASS PASS

PASS PASS

claimAMPT(hol
der, poolsList) PASS PASS

claimAMPT(hol
der, poolsList,
borrowers,
suppliers) PASS PASS

has a loop with array that can grow without bound that can be
costly ; if(borrowers==true) and for suppliers can just be
if(borrowers),

PASS PASS

PASS PASS

PASS PASS

PASS PASS

PASS PASS

PASS PASS

PASS PASS

PASS PASS

PASS PASS

PASS PASS

PASS PASS

updateBorrow
IndexInternal
getNewBorro
wIndex
updateSupply
IndexInternal
getNewSuppl
yIndex
distributeBorr
owerTokens
getBorrowerA
ccruedAmoun
t
distributeSup
plierTokens
getSupplierAc
cruedAmount
getBorrowerT
otalPrincipal
getSupplierB
alance
getPoolInfo

getTotalSuppl
yReward
getSupplyRe
ward
claimAMPT(h
older)

46audits.quillhash.com

Amplify - Audit ReportQuillAudits

PASS PASS

PASS PASS

Controller.sol

constructor PASS PASS

PASS PASS

PASS PASS

transferAMPTD
eposit PASS PASS

submitBorrowe
r PASS PASS

PASS PASS

PASS PASS

createPool PASS PASS

PASS PASS

PASS PASS

PASS PASS Looping over dynamic array that can grow without bounds

PASS PASS

PASS PASS

PASS PASS

PASS PASS

PASS PASS

getPoolUtiliza
tionRate
getPoolAPY
getTotalSuppl
yBalance
_setProvision
Pool
_setInterestR
ateModel
_setAssetsFa
ctory
_setAmptCon
tract
_setAmptSpe
ed

requestPool
Whitelist
withdrawAppli
cationDeposit

grantRewardI
nternal
getBlockNum
ber

_deployPoolL
ibrary
getBorrowerP
ools

47audits.quillhash.com

Amplify - Audit ReportQuillAudits

PASS PASS

transferFunds PASS PASS

PASS PASS
Zero address check borrower to avoid unnecessary read from
storage gas costs

whitelistLender PASS PASS?

Zero address check borrower to avoid unnecessary read from
storage gas costs

blacklistBorrow
er PASS PASS

Zero address check borrower to avoid unnecessary read from
storage gas costs

PASS PASS

PASS PASS?

addStableCoin PASS PASS Maybe an event should be emitted

removeStableC
oin PASS PASS Maybe an event should be emitted

containsStable
Coin PASS PASS

getStableCoins PASS PASS

PASS PASS

redeemAllow
ed PASS PASS

borrowAllowe
d PASS PASS

repayAllowed PASS PASS

createCreditLi
neAllowed PASS PASS

PASS PASS

PASS PASS

PASS PASS

_setAmptDep
ositAmount

whitelistBorro
wer

blacklistLend
er

updateBorrow
erInfo

lendAllowed

calculateBorr
owInterestRat
e

transferAMPT
Deposit

_setBorrower
DebtCeiling

48audits.quillhash.com

Amplify - Audit ReportQuillAudits

PASS PASS

PASS PASS

PASS PASS

PASS PASS

PASS PASS

PASS PASS

PASS PASS

Pool
PoolToken.sol PASS PASS

PASS PASS

Borrower.sol PASS PASS

Potential to save space in struct CreditLine by moving bool
isClosed above borrowCap

Potential to save space in struct PenaltyInfo by reducing index
size and moving it next to bool isOpened

_isActive PASS PASS

totalPrincipal PASS PASS
looping cost over dynamic array creditLines which can grow
and cause DOS

totalInterestRat
e PASS PASS

looping cost over dynamic array creditLines which can grow
and cause DOS

PASS PASS

PASS PASS

PASS PASS

PASS PASS

_setBorrower
Rating

grantRewardI
nternal

getBorrowerT
otalPrincipal

getSupplierB
alance

getPoolInfo

getBlockNum
ber

getBlockTime
stamp

createPoolTo
kenSymbol

getBorrowerT
otalPrincipal

getBorrowerB
alance

borrowerSna
pshot

getBorrowerL
oans

49audits.quillhash.com

Amplify - Audit ReportQuillAudits

PASS PASS

PASS PASS
no check for loanId can lead to unnecessary looking up
storage

PASS PASS
no check for loanId can lead to unnecessary looking up
storage

PASS PASS

PASS PASS

PASS PASS
no check for loanId can lead to unnecessary looking up
storage

Lender.sol

lendInternal PASS PASS

PASS PASS

exchangeRate PASS PASS

exchangRateInt
ernal PASS PASS

balanceOf PASS PASS

balanceOfUnde
rlying PASS PASS

totalSupply PASS PASS

Pool.sol

_initialize PASS PASS

initialize PASS PASS

changeAccess PASS PASS

_lend PASS PASS

lend PASS PASS

redeem PASS PASS

redeemUnderlyi
ng PASS PASS

_transferTokens PASS PASS

createCreditLi
neInternal

closeCreditLi
neInternal

unlockAssetIn
ternal

borrowInterna
l

repayInternal

borrowBalanc
eSnapshot

redeemIntern
al

50audits.quillhash.com

Amplify - Audit ReportQuillAudits

getCash PASS PASS

PASS PASS

PASS PASS

PASS PASS

closeCreditLine PASS PASS

redeemAsset PASS PASS

unlockAsset PASS PASS

borrow PASS PASS

repay PASS PASS

repayBehalf PASS PASS

getBorrowInde
x PASS PASS

getPenaltyInde
xAndFee PASS PASS

PASS PASS

PASS PASS

PASS PASS

PASS PASS

PASS PASS

PASS PASS

PASS PASS

PASS PASS

lendAllowed

redeemAllow
ed

createCreditLi
ne

_calculateDays
Delta

calculatePenalt
yIndexPerPerio
d

_transferToken
sOnBorrow

_transferToken
sOnRepay

borrowAllowe
d

repayAllowed

getBlockNum
ber

getBlockTime
stamp

51audits.quillhash.com

Results
No major issues were found. Some false positive errors were reported by
the tool. All the other issues have been categorized above according to
their level of severity.

Amplify - Audit ReportQuillAudits

52audits.quillhash.com

Closing Summary
Overall, smart contracts are very well written and adhere to guidelines.
Many issues were discovered during the initial audit; the majority of them
are fixed.

Amplify - Audit ReportQuillAudits

53audits.quillhash.com

Disclaimer
Quillhash audit is not a security warranty, investment advice, or an
endorsement of the Amplify Contracts. This audit does not provide a
security or correctness guarantee of the audited smart contracts. The
statements made in this document should not be interpreted as
investment or legal advice, nor should its authors be held accountable for
decisions made based on them. Securing smart contracts is a multistep
process. One audit cannot be considered enough. We recommend that the
Amplify Team put in place a bug bounty program to encourage further
analysis of the smart contract by other third parties.

Amplify - Audit ReportQuillAudits

Audit Report
February, 2022

For

audits.quillhash.com

audits@quillhash.com

Canada, India, Singapore, United Kingdom

QuillAudits

Amplify

https://audits.quillhash.com/smart-contract-audit
https://audits.quillhash.com/smart-contract-audit

