
Audit Report
March, 2022

For

QuillAudits

https://audits.quillhash.com/smart-contract-audit

Contents

Overview

Scope of Audit

Checked Vulnerabilities

Techniques and Methods

Issue Categories

Issues Found

High Severity Issues

 1. Total locked balance is not getting updated on withdraw

 2. Mappings were not being updated appropriately

Medium Severity Issues

Low Severity Issues

 3. Local Variable Shadowing

 4. Required Zero-Trust Policy

Informational Issues

Functional Testing Results

Closing Summary

01

01

02

03

04

05

05

05

05

06

06

06

06

07

08

09

01audits.quillhash.com

Amplify - Audit ReportQuillAudits

Amplify Protocol provides access to high yield through a non-custodial
platform, backed by real-world assets.

Overview

Amplify by Ampt.Finance

The scope of this audit was to analyze Amplify’s smart contract’s
surrounding their voting mechanism for quality, security, and correctness.

Date: 16 February, 2022 - 24 February,2022

The following contracts were in scope:

Amplify Contract:
[1]https://github.com/amplify-labs/contracts/blob/main/protocol/contracts/
Voting/VotingStorage.sol

[2] https://github.com/amplify-labs/contracts/tree/main/protocol/contracts/
Voting

[3] https://github.com/amplify-labs/contracts/blob/main/protocol/contracts/
utils/SmartWalletWhitelist.sol

Branch: Development

Commit: 9dd44ac15cb66685a5beb038065f1673bcd6a8bb

Fixed In: 1dcecca498e83cb26dba91126f9bbf52fe1e1fe

Scope of Audit

https://github.com/amplify-labs/contracts/blob/main/protocol/contracts/Voting/VotingStorage.sol
https://github.com/amplify-labs/contracts/tree/main/protocol/contracts/Voting
https://github.com/amplify-labs/contracts/blob/main/protocol/contracts/utils/SmartWalletWhitelist.sol

02audits.quillhash.com

We have scanned the smart contract for commonly known and more
specific vulnerabilities. Here are some of the commonly known
vulnerabilities that we considered:

Checked Vulnerabilities

Re-entrancy

Timestamp Dependence

Gas Limit and Loops

Exception Disorder

Gasless Send

Use of tx.origin

Malicious libraries

Compiler version not fixed

Address hardcoded

Divide before multiply

Integer overflow/underflow

ERC20 transfer() does not return boolean

ERC20 approve() race

Dangerous strict equalities

Tautology or contradiction

Return values of low-level calls

Missing Zero Address Validation

Private modifier

Revert/require functions

Using block.timestamp

Multiple Sends

Using SHA3

Using suicide

Using throw

Using inline assembly

Amplify - Audit ReportQuillAudits

03audits.quillhash.com

Techniques and Methods
Throughout the audit of smart contract, care was taken to ensure:

The overall quality of code.
Use of best practices.
Code documentation and comments match logic and expected behaviour.
Token distribution and calculations are as per the intended behaviour
mentioned in the whitepaper.
Efficient use of gas.
Code is safe from re-entrancy and other vulnerabilities.

The following techniques, methods and tools were used to review all the
smart contracts.

Structural Analysis
In this step, we have analysed the design patterns and structure of smart
contracts. A thorough check was done to ensure the smart contract is
structured in a way that will not result in future problems.

Static Analysis
Static analysis of smart contracts was done to identify contract
vulnerabilities. In this step, a series of automated tools are used to test the
security of smart contracts.

Code Review / Manual Analysis
Manual analysis or review of code was done to identify new vulnerabilities
or verify the vulnerabilities found during the static analysis. Contracts were
completely manually analysed, their logic was checked and compared
with the one described in the whitepaper. Besides, the results of the
automated analysis were manually verified.

Gas Consumption
In this step, we have checked the behaviour of smart contracts in
production. Checks were done to know how much gas gets consumed
and the possibilities of optimization of code to reduce gas consumption.

Tools and Platforms used for Audit
 Mythril, Slither, C4udit , Solhint

Amplify - Audit ReportQuillAudits

04audits.quillhash.com

Issue Categories
Every issue in this report has been assigned to a severity level. There are
four levels of severity, and each of them has been explained below.

High

Risk-level Description

Medium

Low

Informational

A high severity issue or vulnerability means that your smart

contract can be exploited. Issues on this level are critical to the

smart contract’s performance or functionality, and we

recommend these issues be fixed before moving to a live

environment.

The issues marked as medium severity usually arise because of

errors and deficiencies in the smart contract code. Issues on

this level could potentially bring problems, and they should still

be fixed.

Low-level severity issues can cause minor impact and
or are just warnings that can remain unfixed for now.
It would be better to fix these issues at some point in
the future.

These are severity issues that indicate an
improvement request, a general question, a cosmetic
or documentation error, or a request for information.
There is low-to-no impact.

Number of issues per severity

Open

Type High

Closed

Acknowledged

Low

0 0

2

0

0

0

00

3

0

1

1

Medium Informational

Amplify - Audit ReportQuillAudits

05audits.quillhash.com

Issues Found – Code Review / Manual Testing

High severity issues

Status: Fixed
Commit: 9a08bcbea9b1182600a94d2a66eb3f4437b65ab8

Status: Fixed
Commit: 1dcecca498e83cb26dba91126f9bbf52fe1e1fe8

1.

2.

Total locked balance is not getting updated on withdraw

Mappings were not being updated appropriately

Voting.sol [#L325-327] function withdrawInternal resets the balance of
the depositor’s lock, but totalLocked balance does not get updated.

Voting.sol [L#405-L#414] The delegateInternal function was deleting
existing mappings, but failed to appropriately update mappings for the
delegatee if the oldDelegatee was not equal to address(0).

Recommendation
Update totalLocked balance.

Recommendation
Update the delegatee with the delegator outside of the conditional
statement on [L#406]

Amplify - Audit ReportQuillAudits

06audits.quillhash.com

3. Local Variable Shadowing

Voting.sol [#L108-110] function userOwnsTheLock makes use of the
owner variable which shadows the owner variable in Ownable.sol. As a
result the owner variable may be incorrect and lead to unintended
behavior.

No issues found

Recommendation
Rename the local variables that shadow other components.

Low severity issues

4. Required Zero-Trust Policy

As the crucial aspect of AMPT’s voting system is the offline agreement
and signature of the delegator. If the attacker succeeds in convincing a
delegator to sign a malformed message hash(which contains the
attacker’s desired parameters) with the help of phishing or social-
engineering attacks, it may allow the attacker to delegate voting power,
hence it is necessary and required that every delegator should follow a
zero-trust policy and sign their message hashes by themselves.

Status: Acknowledged

Reference: https://swcregistry.io/docs/SWC-119

Recommendation
Notify and announce the need of zero-trust policy to the delegators.

Medium severity issues

Status: Fixed
Commit: 1dcecca498e83cb26dba91126f9bbf52fe1e1fe8

Amplify - Audit ReportQuillAudits

https://swcregistry.io/docs/SWC-119

07audits.quillhash.com

5.

6.

7.

Use != 0 instead of > 0 for Unsigned Integer Comparison

Don’t initialize variables with default values

Cache array length outside of loop

Informational issues

When dealing with unsigned integer types, comparisons with != 0 are
cheaper than > 0.
Voting.sol [#L95, #L100, #L238, #272, #343, #346,#396,#452,#457, #473]

Uninitialized variables are assigned with the types default values.
Explicitly initializing variables with their default value costs unnecessary
gas.
Voting.sol [#150, #470]

Caching the array length outside a loop saves reading it on each
iteration, as long as the array's length is not changed during the loop.
Voting.sol [#L100, #101]

Recommendation
Consider using !=0 for unsigned integer comparison.

Recommendation
Consider initializing variables without setting their default values.

Recommendation
Cache the array length outside of the loop

Status: Fixed
Commit: 1dcecca498e83cb26dba91126f9bbf52fe1e1fe8

Status: Fixed
Commit: 1dcecca498e83cb26dba91126f9bbf52fe1e1fe8

Status: Fixed
Commit: 1dcecca498e83cb26dba91126f9bbf52fe1e1fe8

Amplify - Audit ReportQuillAudits

08audits.quillhash.com

Functional Testing Results

Amplify - Audit ReportQuillAudits

09audits.quillhash.com

Closing Summary
Overall several high and low level issues were found,which were fixed by
the Amplify team.

Amplify - Audit ReportQuillAudits

10audits.quillhash.com

Disclaimer
QuillAudits smart contract audit is not a security warranty, investment
advice, or an endorsement of the Amplify platform. This audit does not
provide a security or correctness guarantee of the audited smart contracts.

The statements made in this document should not be interpreted as
investment or legal advice, nor should its authors be held accountable for
decisions made based on them. Securing smart contracts is a multistep
process. One audit cannot be considered enough. We recommend that the
Amplify Team put in place a bug bounty program to encourage further
analysis of the smart contract by other third parties.

Amplify - Audit ReportQuillAudits

Audit Report
March, 2022

For

audits.quillhash.com

audits@quillhash.com

Canada, India, Singapore, United Kingdom

QuillAudits

https://audits.quillhash.com/smart-contract-audit
https://audits.quillhash.com/smart-contract-audit

